Instrumentation for Linux Event Log Analysis

Rajarshi Das
Linux Technology Center
IBM India Software Lab

rajarshi@in.ibm.com

Hien Q Nguyen
Linux Technology Center
IBM Beaverton

hien@us.ibm.com

Abstract

Logging is inherent to a system which handles impor-
tant data and performs important transactions and
even otherwise. All the information generated right
from the instant when the system boots up, to the
instant when a device suddenly malfunctions, right
upto the point in time when it shuts down, is im-
portant and is stored as part of the log. However,
all this data that is generated needs to be format-
ted by an appropriate log analysis mechanism so that
the right amount of information is made available to
the consumers of such data. An implementation of
POSIX event logging known as evlog is currently un-
der development. Event Log Analysis is a log analysis
mechanism that works on evlog and is also currently
being developed. An object oriented model called the
Common Information Model (CIM) has the ability
to describe computing entities over enterprise envi-
ronments. The paper looks into a solution based on
the above model which uses instrumentation towards
making the event log analysis mechanism more acces-
sible to system administrators,with the common goal
of keeping their systems failsafe as far as possible.

1 Introduction

Informational messages and actual events generated
on a system from kernel subsystems and system man-

agement applications are logged to be analysed at a
later point in time. However, with an increase in
the volume and types of data getting logged, the re-
quirement for a logging mechanism which records all
the pertinent information that a system administra-
tor or user would require, provides efficient log man-
agement, and runs on enterprise class systems as well,
has resulted in linuxY¥ event logging. This provides
notification capabilities to clients based on their in-
terest in one or many types of events that are gener-
ated and logged in the system. The ability to gener-
ate reports based on the logged data was an added
functionality that ensured that, if a certain consumer
interested in a particular device wanted to be notified
if that device sent out a certain number of messages
in a second, a detailed report for the device would
be generated as and when the mentioned condition
was satisfied. Section 2 gives a brief outline of linux
event logging and event logging analysis. Section 3
outlines the requirement in the context of event log
analysis. Section 4 gives a glossary of CIM terms used
in the context of the solution. Section 5 gives a brief
overview of the concepts in CIM towards implement-
ing a solution to the problem mentioned. Section 6
explains the solution per se, and also looks at features
which have been/ havenot been implemented within/
outside current plan. Section THere we look at the
tangible benefits of this solution which has been built
on a CIM framework.

2 Linux Event Logging and
Event Logging Analysis

In Linux, sysklogd which has been used as the stan-
dard logging facility, has several shortcomings like

1. events are recorded as text only and some perti-
nent information is not recorded.

2. a limited set of event facilities are provided. An
implementation can define only eight of them,
and

3. inability to selectively remove events from a log
file based on user defined criteria. Linux Event
Logging overcomes all of the above and a couple
of other shortcomings as well, and is also suited
to be used on large, multi-processor, enterprise-
class systems. Linux Event Logging provides an
interface for use by software to report events.
The event logging system collects additional in-
formation such as time of the event, combines it
with the interface supplied data and creates an
event log entry.

A good posix based linux event logging mechanism
needs to:

1. optionally take printk and syslog messages and
log them as event records.

2. optionally suppress logging of duplicate events
being logged in rapid succession, based on cer-
tain specified criteria, to avoid system perfor-
mance degradation, and several other useful op-
tions.

Evlog which is an implementation of linux event log-
ging, aims to provide an open-source, platform in-
dependent event logging facility for the linux oper-
ating system and linux applications [evlog].It con-
forms to proposed POSIX Standard 1003.25, Sys-
tem API - Reliable, Available and Serviceable
systems. The POSIX standard is described at
[evlog posix document].

Each client that wishes to be notified of certain
events, needs to register for a certain notification.

Evlnotify is a command used to register actions to
be taken when a specified event occurs. An action is
executed on behalf of the client who registered it.

Evlnotifyd is a part of the logging system and
serves as a daemon towards the basic registration
mechanism for event notification, monitors the two
logs (eventlog and privatelog) where event records are
written, for events that match the notification crite-
ria, and notifies the appropriate client(s) when there
is a match.

Evlactiond is a client for evlnotifyd that
reads entries from the persistent action registry
(/var/evlog/action_ registry) and registers with evl-
notifyd to receive notification of the indicated events.
When evlactiond receives a notification from the evl-
notifyd daemon, it determines which notify_action
(this is a part of every entry in the action registry
file)to execute. Notify_action is a command line or
script that is executed. Every client that has regis-
tered to be notified has an entry in the action_registry
file.

A sample evlnotify command looks like this :

1. evlnotify —add ”removeoldrecords.sh” —filter ” fa-
cility=LOGMGMT".

2. This will register removeoldrecords.sh to be
called when an event of facility type logmgmt
is logged. The script may contain %recid%
which will be replaced by matching record’s id
so that the script can be run for every matching
record. Also, evlnotify doesnot wait for remove-
oldrecords.sh to complete. This may require re-
moveoldrecords.sh to become reentrant accord-
ing to requirements.

1. In case of Event Log Analysis, the evlnotify com-
mand would look something like evInotify —add
"make_a_new_ela_report %recid%” —filter ’facil-
ity=e1001’ —threshold 10 —interval 60m.

b2

2. This translates into run
‘make_a_new_ela_report’ when 10 messages
with facility type ’el001’ get logged in 60
minutes”

When a evlnotify command is issued, the following
occur in sequence.

1. evlnotify sends a request to evlactiond

2. evlactiond registers for a notification with evlno-
tifyd

3. when a message with facility type e1001 arrives,
evlnotifyd notifies evlactiond via signal

4. evlactiond keeps track of how many times the
message has arrived and fires the registered ac-
tion when 10 messages are received in the spec-
ified time interval of 60 minutes.

A event log analysis report generator writes reports
to the location /var/evlog/ela_report.

3 Requirement

Linux Event Log Analysis writes reports to a spec-
ified location but a client mechanism is required to
read this file and display the information to the end
client who had originally asked to be notified. The
requirement is that of a model which is already in
place or use an existing model which can easily map
the event log analysis mechanism and use the model
to make the report available to the client.

Event notification is an integral part of the com-
mon information model itself and the model has well
defined interfaces for an external program to make
use of the notification process. Since this model has
its own built in mechanism to handle event notifica-
tion, it can be considered appropriate for providing
a framework to present the linux system’s event log
analysis report to the client. The next few sections
outline the information model from the event notifi-
cation perspective.

4 Glossary

Client: A process that creates subscriptions on be-
half of a client application.

Delivery: The process of transporting one or more
Indications to an Indication Consumer. The de-
livery destination, encoding and transport pro-
tocol are defined as part of the definition of the
subscription.

Event: An occurrence of a phenomenon of interest.

Filter: An instance of CIM_IndicationFilter that de-
fines the set of Indications of interest to an Indi-
cation consumer.

Handler: An instance of CIM_IndicationHandler
that describes the location, encoding and trans-
port protocol of an Indication consumer.

Indication: The representation of the occurrence of
an Event.

Indication Consumer: A process that consumes
Indications.

Query: A description of the interesting character-
istics of one or more Indications. A query is a
component of a Filter.

Subscription: The process of registering to receive
Indications.

Client application: This is the end user applica-
tion which wants to subscribe to a certain event.

5 Concepts in CIM

The Common Information Model aims at describing
computing and business entities over enterprise, and
service provider enviroments. Event Logging Anal-
ysis in itself, is required to keep a history of events
over a time interval and initiate some action when a
threshold is exceeded. One of the actions that can
be taken is to alert a system administrator via a
event notification that an event of importance has oc-
curred. The Common Information Model commonly
referred to as CIM comprises of a specification which
defines the details for integration with other man-
agement models and a schema which provides the
actual model descriptions. The scope of the specifica-
tion and the schema covers scenarios and use cases in
which notifications based on events are used. CIM’s
ability to thus model event notifications in a simple-
to-understand-and-implement way puts it as a natu-
ral choice to present a linux system’s event log anal-
ysis data to the customers.

CIM Client (management applications

'

CIM Server (CIM Object Manager)

i

CIM Providers

|

Figure 1: The three tiers of Web Based Enterprise
Management

5.1 WBEM

The Instrumentation for Linux Event Log Analy-
sis is based on a Web Based Enterprise Manage-
ment [WBEM] framework. WBEM includes CIM and
the CIM schema and in addition to this, also covers
CIM Operations over HTTP as a protocol allowing
remote interoperable management in a distributed
enviroment. WBEM has a three tiered architecture
which is the one most commonly used. It is shown in
Figure 1

Our solution is based on a a CIM Interface which is
an executable or library that returns or sets infor-
mation about a given managed object (which is es-
sentially a mapping of the device in the real world).
This interface is also known as a Provider Interface.
It is written using CMPI (Common Manageability
Programming Interface) hence is also called a CMPI
Provider Interface. CMPI is a C API for writing the
provider interfaces and is being standardized by the
Open Group.

The architecture of a CIM provider interface could
be shown as in Figure 2

Management Applications

Managed System
CIM CIMOM
Object Mgr. Repository
i)

Note: 1) The CIMOM Repository contains the data model and static objects.
2) The management apps use the CIM API.

Figure 2: Where the provider interface fits in the big
picture

Notes:

1. The CIM Server actually runs on the managed
system and provides access to the system re-
sources using the CIM Operations over HTTP
protocol. The CIM server supports services such
as event notification, remote access, and query
processing. A possible implementation of a CIM
server is a CIM Object Manager which uses
provider interfaces to access resources.

2. The CIM Object Manager repository contains
the data model and the static objects.

3. The provider interface communicates with the
resources (managed objects) to access event no-
tifications. The event notification information
thus received is forwarded to the CIM server for
integration and interpretation.

4. A management application uses APIs provided
by CIM to connect to the CIM server and thus
access the data generated by the provider inter-
face.

5.2 CIM object managers

The WBEMsource Initiative has resulted in a num-
ber of CIM object managers being available to the
community :

TM

1. The Open Group”’s Pegasus written in

C++ (www.opengroup.org/pegasus)

2. The Open Group’s Open Source CIM object
manager (formerly Storage Network Industry
Association (SNTA) CIM object manager) writ-
ten in Java (www.opengroup.org/snia-cimom)

3. The OpenWBEM CIM object
(http://openwbem.sourceforge.net)

manager

4. The WBEM Services CIM object manager
(http://wbemservices.sourceforge.net) written
in JavaTM

There are also others like Microsoft Windows® Man-
agement Instrumentation which is an infrastructure,
including a CIM object manager and a object man-
ager repository. All the above offerings and more
have resulted in a wide spectrum over which provider
interfaces could be written and tested out.

5.3 CIM Event Model

Event notification in CIM terms, translates into hav-
ing an Indication provider interface to retrieve the
necessary information from the managed objects. An
event is the occurrence of a phenomenon of interest
and an indication being the recording of an event.
Once an application subscribes (requests) for in-
formation e.g. it is interested in being notified if a
network error is registered on device 'netdev’ twenty
times within 5 minutes, this information is passed to
the provider interface library which starts a separate
thread that essentially waits for information that is
related to device netdev. Once the mentioned condi-
tion is satisfied, that is e.g. twenty events have oc-
curred mentioning 'network error’ on netdev within
5 minutes, the event log analysis mechanism writes a
report that contains information on the error that has
occurred on netdev. This is in turn read by the con-
cerned thread and delivers an indication to the appli-
cation. The delivery of this indication is synonymous

Client
(Subscription)

1

CIM Listener CIM Server

CIM
CM XML CIMOM

Indication

Listener Handler

Module 3 2

4l ‘

Indication Provider

Resource

Indication
Consumer
(management
application)

Index :

1) Indication Subscription

2) Indication generation and processing
3) Indication delivery

4) Indication Receipt

5) Indication Consumption

Figure 3: The sequence of steps for an indication

with the application getting the notification. The in-
dication might result in a popup message containing
the desired information, or the app might send a mail
to the concerned system administator asking him to
take action. The sequence from the generation of an
indication to the instant when it is delivered is shown
in Figure 3

The subscription that is created by the CIM server
once an app subscribes, actually translates into an in-
stance of a class called CIM_IndicationSubscription.
This class has two main members:

1. CIM_IndicationFilter : which has a property
called 'Query’ which describes the condition e.g.
"select * from reportinstance where neterroriter-
ations = '20’ and neterrorinterval = ’300’”. This
basically defines "What to Send’.

2. CIM_IndicationHandler : this describes the indi-
cation consumer and the communication proto-
col. This answers the question "How and Where
to send’.

An indication provider interface needs to imple-
ment the following CIM interfaces:

1. MustPoll : This interface is for the CIM server
to determine if it can poll a provider. This is the

first to be called once a client application asks
for a notification.

2. AuthorizeFilter : This interface needs to be im-
plemented in case we need to ensure that the
user wanting to subscribe is suitably authorized.
This gets executed after MustPoll.

3. ActivateFilter : This is invoked by the CIM
server to ask the provider interface to look for
events. This gets called after AuthorizeFilter.

4. DeactivateFilter : This interface is called when
the user (subscriber) decides that he doesnt need
any more relevant notifications.

The first three interfaces are called when a client asks
for a notification.

6 The
provider

Event Log Analysis

Instrumentation for linux event log analysis trans-
lates into an implementation of a CIM provider
interface for linux event log analysis. This
has been referred here as the event log analysis
provider. This is in itself a single provider inter-
face'which is used to delivers complete ela reports
to the subscribing client application as and when the
condition matches. Currently, a client application
gets notification on all event log analysis reports that
are written by the ela mechanism irrespective of the
condition specified.

6.1 Design Issues

The common information model offered two types of
classes on the basis of which the indication provider
interface could be implemented. They are:

1. Lifecycle Indication classes These classes are
used whenever the information flow being
modelled can be correlated to a life cy-
cle event. It could represent class creation

1There can be more than one type of provider interface at
a time. In this case, it is a single indication provider interface

e.g. CIM_InstCreation or class deletion like
CIM _InstDeletion.

2. Process Indication classes This class is used to
represent the occurrence of a phenomenon of in-
terest or in other words an event and especially
alert notifications associated with objects that
may,/ maynot be completely modelled in CIM
and cannot be represented using the lifecycle in-
dication classes. e.g. CIM_ProcessIndication.

For the purposes of the event log analysis provider,
a class had to be used which could model the de-
livery of indications (refer section 4). This class
would also have to contain the information(the con-
tents of the event log analysis report) that was
to be shown to the client. The class was called
ela_reportindication which was derived from the
class CIM _ProcessIndication, since an event was cen-
tral to the model being designed.

Also, there were a couple of mechanisms that were
considered towards implementing the interaction be-
tween the provider library and the daemon (refer fig-
ure 4).

1. The ActivateFilter function in the provider li-
brary (refer subsection 5.3) could spawn a thread
which would wait for a signal from the daemon.
As soon as the e event log analysis report gen-
erator (refer figure 4) wrote a report, it would
signal the daemon, which in turn would signal
the waiting thread which in turn would read the
event log analysis report and deliver an indica-
tion.

2. ActivateFilter would include a call to fork a child
from the daemon. The child would get the signal
from the report generator, read the report and
then deliver an indication.

3. ActivateFilter would spawn a thread which
would wait for data on a socket that the dae-
mon had opened. On receiving a signal from the
report generator, the daemon would write the
record id of the event log analysis report to the
socket. The thread would read the report and
deliver an indication.

The first option had a slight overhead in the dae-
mon not knowing that there was a thread waiting for
information from it. So the daemon would have to
explicitly figure out a way to send the recid of the re-
port to the waiting thread. The second option would
require ActivateFilter to be able to fork a child of the
daemon (which is a separate running process). The
child would get a signal from the report generator
but then, it would have to be able to call the CIM
interface call to deliver an indication. Basically, this
points to a possibility of calling CIM functions from
within the daemon, which was thought to be a cum-
bersome process. The third option was a modification
of the first, with the ”ActivateFilter thread - dae-
mon” interaction being considered to be happening
over a socket. Irrespective of whether the client appli-
cation was remotely started or locally, the provider
library (and the CIM server), the daemon and the
report generator had to reside on the same physical
machine. The information flow between ” Activate-
Filter” and the daemon had to happen on the same
machine, thus unix domain sockets were chosen as
the socket mechanism. TCPIP sockets were avoided
and all the overhead that came with it. The following
section details the third option and how it was used
to implement the solution.

6.2 Implementation Details

With reference to the previous section, the MustPoll
and the AuthorizeFilter interfaces have not been im-
plemented. The others have been implemented as
mentioned below:

1. ActivateFilter : A subscription is added with the
filter expression and the handler as specified by
the subscriber. The required process indication
class is loaded here.

2. DeactivateFilter : Check if the number of sub-
scriptions is null and if it is not, decrement.
Finally, the number of subscriptions should be
Zero.

The indication that is delivered is actually an in-
stance of a class called ela_reportindication which

' . Event
2 Log

Client

Application
o Analysis

| Report
8 .
Provider
Library

Generator

Daemon

7

3 Parser
| Library

Provider f

Figure 4: The Event Log Analysis provider model

is derived from a base CIM class (which is tradition-
ally used to represent indications relating to processes
in general.

The provider in essence comprises of four compo-
nents.

1. The Client Application

2. The Provider library which is dependent on a
parser library

3. The Daemon and
4. The Event Log Analysis report generator.

The process of a client application subscribing for
an event, right upto the client application receiving
an indication, in the current solution is shown in Fig-
ure 4 Also, the numbers shown against the arrows in
the figure actually correspond to the steps as outlined
below.

The sequence:

1. The Daemon is started. It initialises itself
and listens for connections from any client that
wishes to connect. Then the CIM server is
started (this is not shown in the figure).

2. The client application sends a request to be no-
tified when certain conditions occur. This is cur-
rently a script which connects to the CIM server.
The ’IndicationFilter information’ is passed to
the CIM server. This results in a new instance of

CIM_IndicationSubscription being created. As
of now, the client asks for a generic notification
where it is notified as soon as there is any ela
report that is created.

. This request results in the ActivateFilter func-
tion getting called, where a thread is spawned
which connects to the daemon and waits for
data. When the thread connects to the daemon,
the daemon in turn forks a child for this new
client connection and continues to wait for new
clients to connect.

. Once the ela report generator writes a report
to the desired location, it sends a signal to the
daemon and sends the recid of the newly written
report as part of the signal to the daemon.

. The child of the daemon process (responsible
for the client connection) receives the signal, re-
trieves the recid from the signal, and writes this
recid to a socket.

. The waiting thread in the provider library reads
this recid, constructs the filename of the ela re-
port from this recid, and sends this filename to
the parser.

. The parser in turn, opens the file with the sent
filename, reads the fields and fills up a structure
with these fields.

. The thread in the provider library now sets the
properties of the ela_reportindication class, with
the fields that it reads from the structure, and
delivers an indication. This results in a popup
window at the client application containing all
the information that was present in he ela re-
port and in addition to that the hostname of the
system as well (which we are interested in and
on which the provider is running).

6.3 Current State

1.

The current solution ensures that a single client
application can subscribe at a time.

. The client application can receive indications as

long as it desires, and can exit whenever it does-
not intend to receive any more indications.

. If the CIM server is started without starting the

daemon first, it will fail to do so and will exit
with a message indicating the sequence to be fol-
lowed for the server to be able to start again.

The solution has currently been tested on the
SNIA CIM server alone.

. The first code drop for this solution is due

shortly when it is to be hosted on the evlog site
(http://evlog.sourceforge.net).

6.4 Features in scope, to be imple-

1.

mented

Multiple client applications should be able to
subscribe to the same event. The Ela provider
design allows for multiple client applications to
subscribe. The client code that is being used
doesnot allow multiple client applications to sub-
scribe for the same event as of now. Once the
code is modified as required, it will be tested on
SNIA which is one of the many CIM object man-
agers available under the WBEMSource initia-
tive (www.opengroup.org/wbemsource) The Ela
provider needs to be tested to work on Pegasus
as well.

. If the parent process (the daemon) receives a sig-

nal to terminate either accidentally or otherwise,
it should be able to terminate all its children be-
fore it terminates.

. Also, if the daemon gets killed accidentally, the

cimom server should be able to close the connec-

The client application used here has been down-
loaded from the Standards Based Linux Instrumen-
tation for Manageability (SBLIM) site [SBLIM] and 4.
suitably modified to suit the purpose.

tion and exit gracefully (Note below).

The DeactivateFilter interface needs to be im-
plemented. This should be called once the client

application dies, and should be capable of delet-
ing the existing subscription. Also, once the
client application (the runit.sh script in evsub)
dies, the child (of the daemon) responsible for
servicing this client application should be able
to exit without user intervention (unlike man-
ually killing the children as per current imple-
mentation). Whether the DeactivateFilter code
(if called by the exiting client application) can
cause the corresponding child (of the daemon)
to exit in such a scenario, needs to be investi-
gated.

Note : The daemon needs to be started first, fol-
lowed by the cimom server and finally the client ap-
plication which intends to receive information. Once
a client application has received the desired informa-
tion, during cleanup, the client application should be
killed first, followed by the cimom server and finally
the daemon. Also, any existing subscriptions need to
be deleted before restarting the cimom server (if the
cimom server needs to be started without starting the
daemon first) else the server will not start. To delete
the subscriptions, the daemon has to be restarted,
then the server. After the subscriptions have been
deleted, the cimom server can be restarted.

6.5 Nice to have, not in current scope

1. The client application as mentioned previously,
should be able to request for information e.g.
being notified if a network error is registered on
device 'netdev’ twenty times within 5 minutes,
and get the specific information. As of now, the
client application gets information pertaining to
netdev, and all other devices pertaining to which
the event log analysis mechanism writes reports.

7 Conclusions
Usage of a CIM based framework ensures
1. faster adoption in the industry

2. also allows for remote management capability
which could be used in scenarios where mission

critical servers need to be monitored regularly
from failure condition

3. that arbitrary methods can be applied on ob-
jects, apart from the normal set and get opera-
tions

4. a beneficial integrated data/event model

5. uniform base management for different plat-
forms, and architectures while allowing a archi-
tecture or platform specific instrumentation as
well

6. it is easy to extend the existing models to ac-
comodate complex relationships and hierarchies
and avoid cross referenced data tables to de-
pict dependencies, component connection asso-
ciations.

An event log analysis provider ensures that each
and every device that is not supposed to have mini-
mum critical downtime can be constantly monitored
so that the interested party can be informed by means
of mail or popup messages or other mechanisms
so that appropriate action can be taken. IBM™TM
Director™ is a product which is used for intelligent
systems management, and instrumentation for linux
event log analysis could prove useful to its hardware
event monitor towards monitoring errors on all 10
adapters. This apart, all other systems management
applications which are interested in consuming data
based on the common information model are poten-
tial customers of this solution.

Increased acceptance of the common informa-
tion model as a reliable, easy-to-setup-and-maintain
framework towards interfacing systems management
applications (and their requirements) would ensure
greater availability of such applications to a wider
customer base.

8 Acknowledgements

We are extremely grateful to Viktor Mihajlovski for
assisting us in developing working knowledge on the
Common Information Model. We owe our thanks to
Dipankar Sarma and R. Sharada for their support.

References

[evlog] The event logging website. A full description
of the features available and the ongoing work is
available here. nttp://eviog.stnet

[evlog posix document] A description of the posix
standard adopted while developing evlog

http://evlog.sf.net/posix_rationale.html

[WBEM] The website for Web Based Enterprise

Management. nstp://www.dmtf.org/standards/whem

[SBLIM] Standards Based Linux Instrumentation for
Manageability. netp://oss.software.ibm.com /sblim

[Indication concepts] The CIM Indications whitepa-

PEr. http://www.dmtf.org/standards/published_documents

[CIM Tutorial] A comprehensive tutorial
on the Common Information Model

http://www.wbemsolutions.com /tutorials/CIM

9 Trademarks

Linux is a registered trademark of Linus Torvalds.
Pegasus is a trademark of The Open Group.

The Open Group is a trademark of The Open Group.
Java is a trademark of Sun Microsystems Inc.
Windows is a registered trademark of Microsoft Corp.
IBM and IBM Director are trademarks of Interna-
tional Business Machines Corp.

Other company, product or service names may be
trademarks or service marks of others.

10

